Amelioration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced behavioural dysfunction and oxidative stress by Pycnogenol in mouse model of Parkinson's disease


    loading  Checking for direct PDF access through Ovid

Abstract

Increased oxidative stress is implicated in the pathogenesis of Parkinson's disease in which dopaminergic neurons are intrinsically susceptible to oxidative damage. Swiss albino mice were pretreated with Pycnogenol (PYC), an extract of Pinus maritime bark [20 mg/kg body weight, intraperitoneally (i.p.)] once daily for 15 days. Thereafter, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (20 mg/kg body weight, intraperitoneally) was given four times at 2-hour intervals on 1 day only. Behaviours were altered in the MPTP group as compared with the vehicle-treated group and were restored in the PYC-pretreated MPTP group. The activity of antioxidant enzymes and the content of glutathione were significantly depleted in the MPTP-induced Parkinsonian group. The MPTP group pretreated with PYC showed significant protection of the activity of antioxidant enzymes and glutathione content when compared with the vehicle-treated MPTP group. A significantly elevated level of thiobarbituric acid reactive substances in the MPTP group was decreased significantly in the animals pretreated with PYC. An increase in the number of dopaminergic D2 receptors and decrease in the level of dopamine and its metabolite 3,4-dihydroxyphenyl acetic acid in the striatum were observed after MPTP injection, and restored significantly after PYC pretreatment. Thus, PYC may be used to prevent or reduce the deterioration caused by free radicals, thereby preventing subsequent behavioural and biochemical changes that occur in Parkinsonian mice.

    loading  Loading Related Articles