Induction of Heme Oxygenase-1 Attenuates the Severity of Sepsis in a Non-Surgical Preterm Mouse Model


    loading  Checking for direct PDF access through Ovid

Abstract

Preterm sepsis is characterized by systemic bacterial invasion and inflammatory response. Its pathogenesis is unclear due to lack of proper animal models. Heme oxygenase-1 (HO-1) can affect physiologic and pathologic conditions through its anti-inflammatory, antioxidative, and anti-apoptotic properties. Since HO-1 is developmentally regulated, it may play a role in the pathogenesis of preterm sepsis. For this study, sepsis was induced using the non-surgical “cecal slurry” (CS) model. CS was given intraperitoneally at various doses to 4-day-old newborn mice to determine dose-dependent effects. The LD40 was then given and changes in bodyweight, bacterial colonization of organs, hematology, serum biochemistry, and immunomodulatory gene expression were determined. We found a dose-dependent mortality with an LD40 of 2.0 mg/g. Significant bacterial colonization and hematological changes (leukocytopenia, thrombocytopenia, and lymphocytopenia) and increased gene expression of pro-inflammatory cytokines, pattern-recognition receptors, and other genes related to immune responses were also observed. Twenty-four hours post-sepsis induction, bodyweight loss was associated with mortality and organ damage. Finally, to elucidate a protective role of HO-1, 30-μmol heme/kg was given subcutaneously 24 h pre-sepsis induction. HO activity in livers and spleens significantly increased 64% and 50% over age-matched controls 24 h post-heme administration. Importantly, heme significantly reduced mortality from 40.9% to 6.3% (P <0.005) and gene expression of pro-inflammatory cytokines (Ccl5, Cxcl10, IL-1b, and Ifng). We conclude that the CS model can be used as a model to study preterm sepsis. Because induction of HO-1 significantly reduced mortality, we speculate that HO-1 may confer protection against sepsis in preterm infants.

    loading  Loading Related Articles