Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose of review

The initial steps of reverse cholesterol transport involve export of cholesterol from peripheral cells to plasma lipoproteins for subsequent delivery to the liver. The review discusses recent developments in our understanding of how these steps occur, with particular emphasis on the macrophage, the major site of cellular cholesterol accumulation in atherosclerosis.

Recent findings

ATP binding cassette transporter (ABC) A1 exports cholesterol and phospholipid to lipid-free apolipoproteins, while ATP binding cassette transporter G1 and scavenger receptor BI export cholesterol to phospholipid-containing acceptors. ABCA1-dependent cholesterol export involves an initial interaction of apolipoprotein AI with lipid raft membrane domains, although ABCA1 and most exported cholesterol are not raft associated. ABCG1 exports cholesterol to HDL and other phospholipid-containing acceptors. These include particles generated during lipidation of apoAI by ABCA1, suggesting that the two transporters cooperate in cholesterol export. Scavenger receptor BI is atheroprotective, mediating clearance of HDL cholesterol by the liver. The relative contributions of scavenger receptor BI and ABCG to cholesterol export to HDL from macrophages is unclear and may depend on cellular cholesterol status and the cholesterol gradient between cell and acceptor.

Summary

The presence of distinct pathways for cholesterol efflux to lipid-free apolipoprotein AI and phospholipid-containing HDL species clarifies our understanding of reverse cholesterol transport, and provides new opportunities for its therapeutic manipulation.

Related Topics

    loading  Loading Related Articles