New insights into erythropoiesis

    loading  Checking for direct PDF access through Ovid


Commitment of hematopoietic cells to the erythroid lineage involves the actions of several transcription factors, including TAL1, LMO2, and GATA-2. The differentiation of committed erythroid progenitor cells involves other transcription factors, including NF-E2 and EKLF. Upon binding erythropoietin, the principal regulator of erythropoiesis, cell surface erythropoietin receptors dimerize and activate specific intracellular kinases, including Janus family tyrosine protein kinase 2, phosphoinositol-3 kinase, and mitogen-activated protein kinase. Important substrates of these kinases are tyrosines in the erythropoietin receptors themselves and the signal transducer and transcription activator proteins. Erythropoietin prevents erythroid cell apoptosis. Some of the apoptotic tendency of erythroid cells can be attributed to proapoptotic molecules produced by hematopoietic cells, macrophages, and stromal cells. Cell divisions accompanying terminal erythroid differentiation are finely controlled by cell cycle regulators, and disruption of these terminal divisions causes erythroid cell apoptosis. In reticulocyte maturation, regulated degradation of internal organelles involves a lipoxygenase, whereas survival requires the antiapoptotic protein Bcl-x.

Related Topics

    loading  Loading Related Articles