The independent effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans


    loading  Checking for direct PDF access through Ovid

Abstract

Purpose of reviewThis review details the independent effects of purified eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans. We report data from the recent literature and our own controlled clinical trials which compared the independent effects of these fatty acids in individuals at increased risk of cardiovascular disease, namely overweight hyperlipidaemic men and treated-hypertensive, type 2 diabetic men and women. We discuss the biological effects of these fatty acids and the potential mechanisms through which they may affect cardiovascular disease risk factors.Recent findingsA cardioprotective effect for ω3 fatty acids is supported by prospective studies demonstrating an inverse association between fish intake and coronary heart disease mortality. Data from secondary prevention trials support a reduction in ventricular fibrillation as a primary mechanism for the decreased incidence of myocardial infarction. Clinical trials and experimental studies have shown that ω3 fatty acids have many other potentially important antiatherogenic and antithrombotic effects. Omega-3 fatty acids lower blood pressure and heart rate, improve dyslipidaemia, reduce inflammation, and improve vascular and platelet function. These favourable effects have until recently been primarily attributed to the ω3 fatty acid eicosapentaenoic acid, which is present in large amounts in fish oil. Controlled studies in humans now demonstrate that docosahexaenoic acid, although often present in lower quantities, has equally important anti-arrhythmic, anti-thrombotic and anti-atherogenic effects.SummaryAvailable evidence strongly suggests that eicosapentaenoic acid and docosahexaenoic acid have differing haemodynamic and anti-atherogenic properties. The effects of the two fatty acids may also differ depending on the target population.

    loading  Loading Related Articles