Comparison of Acute Exercise Responses Between Conventional Video Gaming and Isometric Resistance Exergaming


    loading  Checking for direct PDF access through Ovid

Abstract

Bonetti, AJ, Drury, DG, Danoff, JV, and Miller, TA. Comparison of acute exercise responses between conventional video gaming and isometric resistance exergaming. J Strength Cond Res 24(7): 1799-1803, 2010-Exergaming is a relatively new type of entertainment that couples physical activity and video gaming. To date, research that has focused on the physiologic responses to exergaming has been focused exclusively on aerobic-type activities. The purpose of this project was to describe the acute exercise responses (i.e., oxygen uptake [O2], heart rate, and rate of perceived exertion [RPE]) to exergaming using full-body isometric muscle resistance and to determine whether these responses are different during single- versus opponent-based play. Male subjects (n = 32) were randomly and equally divided into either an experimental (EXP) or control (CON) group. Acute exercise responses (O2, heart rate, and RPE) were measured in all subjects during both solo- and opponent-based video game play. Subjects in the EXP group played using a controller that relied on full-body isometric muscle resistance to manipulate the on-screen character, whereas CON subjects used a conventional handheld controller. During solo play, the EXP group exhibited significantly higher values for O2 (9.60 ±0.50 mL/kg/min) and energy expenditure (3.50 ± 0.14 kcal/min) than the CON group (O2 5.05 ± 0.16 mL/kg/min; energy expenditure 1.92 ± 0.07 kcal/min). These changes occurred with no significant differences in RPE or heart rate between the groups. These results suggest that whole-body isometric exergaming results in greater energy expenditure than conventional video gaming, with no increase in perceived exertion during play. This could have important implications regarding long-term energy expenditure in gamers.

    loading  Loading Related Articles