Different Loading Schemes in Power Training During the Preseason Promote Similar Performance Improvements in Brazilian Elite Soccer Players

    loading  Checking for direct PDF access through Ovid

Abstract

Loturco, I, Ugrinowitsch, C, Tricoli, V, Pivetti, B, and Roschel, H. Different loading schemes in power training during the preseason promote similar performance improvements in Brazilian elite soccer players. J Strength Cond Res 27(7): 1791–1797, 2013—The present study investigated the effects of 2 different power training loading schemes in Brazilian elite soccer players. Thirty-two players participated in the study. Maximum dynamic strength (1RM) was evaluated before (B), at midpoint (i.e., after 3 weeks; T1), and after 6 weeks (T2) of a preseason strength/power training. Muscle power, jumping, and sprinting performance were evaluated at B and T2. Players were randomly allocated to 1 of 2 training groups: velocity-based (VEL: n = 16; age, 19.18 ± 0.72 years; height, 173 ± 6 cm; body mass, 72.7 ± 5.8 kg) or intensity-based (INT: n = 16; age, 19.11 ± 0.7 years; height, 172 ± 4.5 cm; body mass, 71.8 ± 4.6 kg). After the individual determination of the optimal power load, both groups completed a 3-week traditional strength training period. Afterward, the VEL group performed 3 weeks of power-oriented training with increasing velocity and decreasing intensity (from 60 to 30% 1RM) throughout the training period, whereas the INT group increased the training intensity (from 30 to 60% 1RM) and thus decreased movement velocity throughout the power-oriented training period. Both groups used loads within ±15% (ranging from 30 to 60% 1RM) of the measured optimal power load (i.e., 45.2 ± 3.0% 1RM). Similar 1RM gains were observed in both groups at T1 (VEL: 9.2%; INT: 11.0%) and T2 (VEL: 19.8%; INT: 22.1%). The 2 groups also presented significant improvements (within-group comparisons) in all of the variables. However, no between-group differences were detected. Mean power in the back squat (VEL: 18.5%; INT: 20.4%) and mean propulsive power in the jump squat (VEL: 29.1%; INT: 31.0%) were similarly improved at T2. The 10-m sprint (VEL: −4.3%; INT: −1.6%), jump squat (VEL: 7.1%; INT: 4.5%), and countermovement jump (VEL: 6.7%; INT: 6.9%) were also improved in both groups at T2. Curiously, the 30-m sprint time (VEL: −0.8%; INT: −0.1%) did not significantly improve for both groups. In summary, our data suggest that male professional soccer players can achieve improvements in strength- and power-related abilities as a result of 6 weeks of power-oriented training during the preseason. Furthermore, similar performance improvements are observed when training intensity manipulation occurs around only a small range within the optimal power training load.

Related Topics

    loading  Loading Related Articles