The Use of the Isometric Squat as a Measure of Strength and Explosiveness

    loading  Checking for direct PDF access through Ovid

Abstract

Bazyler, CD, Beckham, GK, and Sato, K. The use of the isometric squat as a measure of strength and explosiveness. J Strength Cond Res 29(5): 1386–1392, 2015—The isometric squat has been used to detect changes in kinetic variables as a result of training; however, controversy exists in its application to dynamic multijoint tasks. Thus, the purpose of this study was to further examine the relationship between isometric squat kinetic variables and isoinertial strength measures. Subjects (17 men, 1-repetition maximum [1RM]: 148.2 ± 23.4 kg) performed squats 2 d·wk−1 for 12 weeks and were tested on 1RM squat, 1RM partial squat, and isometric squat at 90° and 120° of knee flexion. Test-retest reliability was very good for all isometric measures (intraclass correlation coefficients > 0.90); however, rate of force development 250 milliseconds at 90° and 120° seemed to have a higher systematic error (relative technical error of measurement = 8.12%, 9.44%). Pearson product-moment correlations indicated strong relationships between isometric peak force at 90° (IPF 90°) and 1RM squat (r = 0.86), and IPF 120° and 1RM partial squat (r = 0.79). Impulse 250 milliseconds (IMP) at 90° and 120° exhibited moderate to strong correlations with 1RM squat (r = 0.70, 0.58) and partial squat (r = 0.73, 0.62), respectively. Rate of force development at 90° and 120° exhibited weak to moderate correlations with 1RM squat (r = 0.55, 0.43) and partial squat (r = 0.32, 0.42), respectively. These findings demonstrate a degree of joint angle specificity to dynamic tasks for rapid and peak isometric force production. In conclusion, an isometric squat performed at 90° and 120° is a reliable testing measure that can provide a strong indication of changes in strength and explosiveness during training.

Related Topics

    loading  Loading Related Articles