Cerebral hypoxemia-ischemia and reoxygenation with 21% or 100% oxygen in newborn piglets: Effects on extracellular levels of excitatory amino acids and microcirculation


    loading  Checking for direct PDF access through Ovid

Abstract

ObjectiveTo determine whether reoxygenation with 21% oxygen is preferable to 100% oxygen in normalizing extracellular levels of excitatory amino acids in the brains of hypoxic-ischemic newborn piglets and to compare this model of combined hypoxemia-ischemia to a previously used model of global hypoxemia.DesignProspective, randomized animal study.SettingSurgical research laboratory.SubjectsTwenty-four anesthetized piglets, 1–3 days old.InterventionsHypoxemia-ischemia was achieved by normo ventilation with 8% oxygen and temporary occlusion of the common carotid arteries. After 20 mins, reoxygenation-reperfusion was started with 21% oxygen (HI 21% group, n = 12) or 100% oxygen (HI 100% group, n = 12) for 30 mins followed by 21% oxygen. All piglets were observed for 2 hrs.Measurements and Main ResultsWe measured extracellular concentrations of amino acids in striatum and hypoxanthine in cerebral cortex (microdialysis), microcirculation in cerebral cortex (laser Doppler), plasma hypoxanthine, and mean arterial pressure. During the 2-hr reoxygenation-reperfusion period, levels of amino acids were significantly higher in the HI 21% group compared with the HI 100% group (glutamate, p = 0.02; aspartate, p = 0.03). Mean arterial pressure was significantly lower in the HI 21% group (p = 0.04). Microcirculation decreased to <10% of baseline during hypoxemia-ischemia and normalized during reoxygenation-reperfusion in the HI 100% group, but it remained at a significantly lower level in the HI 21% group (p = 0.03).ConclusionsSignificantly higher levels of excitatory amino acids in striatum, significantly lower mean arterial pressure, and a significantly greater degree of hypoperfusion in cerebral cortex were found after reoxygenation with 21% oxygen compared with 100% oxygen in normocapnic, hypoxemic-ischemic newborn piglets. This suggests a less favorable outcome in the group receiving room air.

    loading  Loading Related Articles