Segmentation of Dilated Hemorrhoidal Veins in Hemorrhoidal Disease

    loading  Checking for direct PDF access through Ovid

Abstract

Vein segmentation is a vascular remodeling process mainly studied in experimental conditions and linked to hemodynamic factors, with clinical implications. The aim of this work is to assess the morphologic characteristics, associated findings, and mechanisms that participate in vein segmentation in humans. To this end, we examined 156 surgically obtained cases of hemorrhoidal disease. Segmentation occurred in 65 and was most prominent in 15, which were selected for serial sections, immunohistochemistry, and immunofluorescence procedures. The dilated veins showed differently sized spaces, separated by thin septa. Findings associated with vein segmentation were: (a) vascular channels formed from the vein intima endothelial cells (ECs) and located in the vein wall and/or intraluminal fibrin, (b) vascular loops formed by interconnected vascular channels (venous-venous connections), which encircled vein wall components or fibrin and formed folds/pillars/papillae (FPPs; the encircling ECs formed the FPP cover and the encircled components formed the core), and (c) FPP splitting, remodeling, alignment, and fusion, originating septa. Thrombosis was observed in some nonsegmented veins, while the segmented veins only occasionally contained thrombi. Dense microvasculature was also present in the interstitium and around veins. In conclusion, the findings suggest that hemorrhoidal vein segmentation is an adaptive process in which a piecemeal angiogenic mechanism participates, predominantly by intussusception, giving rise to intravascular FPPs, followed by linear rearrangement, remodeling and fusion of FPPs, and septa formation. Identification of other markers, as well as the molecular bases, hemodynamic relevance, and possible therapeutic implications of vein segmentation in dilated hemorrhoidal veins require further studies.

Related Topics

    loading  Loading Related Articles