Difference Sets and Hyperovals

    loading  Checking for direct PDF access through Ovid

Abstract

We construct three infinite families of cyclic difference sets, using monomial hyperovals in a desarguesian projective plane of even order. These difference sets give rise to cyclic Hadamard designs, which have the same parameters as the designs of points and hyperplanes of a projective geometry over the field with two elements. Moreover, they are substructures of the Hadamard design that one can associate with a hyperoval in a projective plane of even order.

Related Topics

    loading  Loading Related Articles