Evasion of mucosal defenses duringAeromonas hydrophilainfection of channel catfish (Ictalurus punctatus) skin

    loading  Checking for direct PDF access through Ovid

Abstract

Highlights

★ We examined mucosal responses to A. hydrophila infection in channel catfish skin. ★ Expression signatures indicated pathogen suppression of key innate immune factors. ★ Signatures provide understanding of binding and invasion of virulent A. hydrophila.

The mucosal surfaces of fish serve as the first line of defense against the myriad of aquatic pathogens present in the aquatic environment. The immune repertoire functioning at these interfaces is still poorly understood. The skin, in particular, must process signals from several fronts, sensing and integrating environmental, nutritional, social, and health cues. Pathogen invasion can disrupt this delicate homeostasis with profound impacts on signaling throughout the organism. Here, we investigated the transcriptional effects of virulent Aeromonas hydrophila infection in channel catfish skin, Ictalurus punctatus. We utilized a new 8 × 60 K Agilent microarray for catfish to examine gene expression profiles at critical early timepoints following challenge—2 h, 8 h, and 12 h. Expression of a total of 2,168 unique genes was significantly perturbed during at least one timepoint. We observed dysregulation of genes involved in antioxidant, cytoskeletal, immune, junctional, and nervous system pathways. In particular, A. hydrophila infection rapidly altered a number of potentially critical lectins, chemokines, interleukins, and other mucosal factors in a manner predicted to enhance its ability to adhere to and invade the catfish host.

Related Topics

    loading  Loading Related Articles