Expression and functional characterization of interferon regulatory factors (irf2,irf7andirf9) in the blunt snout bream (Megalobrama amblycephala)

    loading  Checking for direct PDF access through Ovid

Abstract

Interferon regulatory factors (irfs) are a family of genes that encode transcription factors with important roles in regulating the expression of Type I interferons (IFNs) and other genes associated with related pathways. irfs have multitudinous functions in growth, development and regulation of oncogenesis. In this study, three irf family members (irf2, irf7, irf9) were identified and characterized in Megalobrama amblycephala at the mRNA and amino acid levels. M. amblycephala irfs share a high sequence homology with other vertebrate irfs. Constitutive expression levels of the three genes were detected (using qPCR) in all studied tissues: low to medium in kidney, gills, heart and muscle, and high in liver, spleen, intestine and blood. qPCR was also used to analyze the dynamic expression patterns of irfs in different embryonic development stages: irf2 is not activated during the embryonic development, whereas irf9 appears to play important roles around hatching and during the larval development. Transcripts of all three studied irfs were upregulated after stimulation by Aeromonas hydrophila bacterium in liver, spleen, head kidney and trunk kidney, whereas downregulation was observed in intestine and gills. The results show that these three irfs are likely to be important factors in the blunt snout bream immune system. They also provide a foundation for studying the origin and evolution of the innate immune system in the blunt snout bream.

Related Topics

    loading  Loading Related Articles