A non-venomous sPLA2 of a lepidopteran insect: Its physiological functions in development and immunity

    loading  Checking for direct PDF access through Ovid


Eicosanoids are oxygenated C20 polyunsaturated fatty acids that mediate various physiological processes in insects. Eicosanoid biosynthesis begins with a C20 precursor, arachidonic acid (5,8,11,14-eicosatetraenoic acid: AA). AA is usually released from phospholipids at sn-2 position by catalytic activity of phospholipase A2 (PLA2). Although various PLA2s classified into 16 gene families (= Groups) are known in various biological systems, few PLA2s are known in insects. Only two PLA2s involved in intracellular calcium independent PLA2 (iPLA2) group have been identified in lepidopteran insects with well known eicosanoid physiology. This study reports the first secretory PLA2 (sPLA2) in lepidopteran insects. A partial open reading frame (ORF) of PLA2 was obtained by interrogating Spodoptera exigua transcriptome. Subsequent 3′-RACE resulted in a full ORF (Se-sPLA2A) encoding 194 amino acid sequence containing signal peptide, calcium-binding domain, and catalytic site. Phylogenetic analysis indicated that Se-sPLA2A was clustered with other Group III sPLA2s. Se-sPLA2A was expressed in most larval instars except late last instar. Its expression was inducible by immune challenge and juvenile hormone analog injection. RNA interference of Se-sPLA2A significantly suppressed cellular immunity and impaired larval development. These results suggest that non-venomous sPLA2 plays a crucial role in immune and developmental processes in S. exigua, a lepidopteran insect.HighlightsSe-sPLA2A is the first identified secretory PLA2 (sPLA2) in lepidopteran insects.Se-sPLA2A is classified into Group III sPLA2s.Se-sPLA2A play crucial roles in mediating cellular immunity and larval development.

    loading  Loading Related Articles