beta-Cell Hypertrophy in fa/fa Rats Is Associated With Basal Glucose Hypersensitivity and Reduced SNARE Protein Expression

    loading  Checking for direct PDF access through Ovid


In normal isolated beta-cells, the response to glucose is heterogeneous and characterized by an increasing number of secretory cells as glucose concentration rises (Pipeleers DG, Kiekens R, Ling Z, Wilikens A, Schuit F: Physiologic relevance of heterogeneity in the pancreatic beta-cell population. Diabetologia 37 (Suppl. 2):S57-S64, 1994). We hypothesized that fasting hyperinsulinemia in obesity might be explained by altered beta-cell heterogeneity of signal transduction mechanisms, possibly involving exocytotic proteins. Insulin secretion from individual beta-cells sorted according to the size of the islet donor (<125 micro m, >250 micro m, and intermediate diameter) was measured by reverse hemolytic plaque assay. beta-cells from fa/fa rats were hypertrophied 25-40%, independent of donor islet size. This was accompanied by an increased proportion of secretory cells (recruitment) at 5.5-11.0 mmol/l glucose, increased secretion per cell at 2.8 mmol/l glucose, and decreased insulin content after acute glucose exposure without an increase in secretion per cell. Decreased expression of exocytotic (soluble N-ethylmaleimide-sensitive fusion protein receptor [SNARE]) proteins, vesicle-associated membrane protein isoform 2 (VAMP-2), synaptosomal protein of 25 kDa (SNAP-25), and syntaxin-1 and -2 in fa/fa beta-cells may contribute to the failure to sustain excessive plaque size at higher glucose concentrations. Fasting hyperinsulinemia may be maintained by increased recruitment and a exaggerated secretory response in all fa-derived islet populations. Glucose regulates beta-cell responsiveness in the short term, and these effects may involve altered expression of SNARE proteins. Diabetes 48:997-1005, 1999

Related Topics

    loading  Loading Related Articles