Proinsulin-Specific, HLA-DQ8, and HLA-DQ8-Transdimer–Restricted CD4+ T Cells Infiltrate Islets in Type 1 Diabetes

    loading  Checking for direct PDF access through Ovid


Type 1 diabetes (T1D) develops when insulin-secreting β-cells, found in the pancreatic islets of Langerhans, are destroyed by infiltrating T cells. How human T cells recognize β-cell-derived antigens remains unclear. Genetic studies have shown that HLA and insulin alleles are the most strongly associated with risk of T1D. These long-standing observations implicate CD4+ T-cell responses against (pro)insulin in the pathogenesis of T1D. To dissect the autoimmune T-cell response against human β-cells, we isolated and characterized 53 CD4+ T-cell clones from within the residual pancreatic islets of a deceased organ donor who had T1D. These 53 clones expressed 47 unique clonotypes, 8 of which encoded proinsulin-specific T-cell receptors. On an individual clone basis, 14 of 53 CD4+ T-cell clones (26%) recognized 6 distinct but overlapping epitopes in the C-peptide of proinsulin. These clones recognized C-peptide epitopes presented by HLA-DQ8 and, notably, HLA-DQ8 transdimers that form in HLA-DQ2/-DQ8 heterozygous individuals. Responses to these epitopes were detected in the peripheral blood mononuclear cells of some people with recent-onset T1D but not in HLA-matched control subjects. Hence, proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer–restricted CD4+ T cells are strongly implicated in the autoimmune pathogenesis of human T1D.

Related Topics

    loading  Loading Related Articles