Identification of candidate genes involved in the radiosensitivity of esophageal cancer cells by microarray analysis

    loading  Checking for direct PDF access through Ovid

Abstract

SUMMARY

Radiotherapy plays a key role in the control of tumor growth in esophageal cancer patients. To identify the patients who will benefit most from radiation therapy, it is important to know the genes that are involved in the radiosensitivity of esophageal cancer cells. Hence, we examined the global gene expression in radiosensitive and radioresistant esophageal squamous cell carcinoma cell lines. Radiosensitivities of 13 esophageal cancer cell lines were measured. RNA was extracted from each esophageal cancer cell line and a normal esophageal epithelial cell line, and the global gene expression profiles were analyzed using a 34 594-spot oligonucleotide microarray. In the clonogenic assay, one cell line (TE-11) was identified to be highly sensitive to radiation, while the other cell lines were found to be relatively radioresistant. We identified 71 candidate genes that were differentially expressed in TE-11 by microarray analysis. The up-regulated genes included CABPR, FABP5, DSC2, GPX2, NME, CBR3, DOCK8, and ABCC5, while the down-regulated genes included RPA1, LDOC1, NDN, and SKP1A. Our investigation provided comprehensive information on genes related to radiosensitivity of esophageal cancer cells; this information can serve as a basis for further functional studies.

Related Topics

    loading  Loading Related Articles