Effects of running exercise on fibre-type distribution of soleus and plantaris muscles in diabetic Otsuka Long-Evans Tokushima fatty rats

    loading  Checking for direct PDF access through Ovid

Abstract

Aim

Effect of running exercise on fibre-type distributions of the slow soleus and fast plantaris muscles was investigated in male Otsuka Long-Evans Tokushima fatty rats (OLETF) as an animal model of spontaneous type 2 diabetes mellitus.

Methods

Five-week-old OLETF rats were allowed to exercise voluntarily in running wheels for 32 days and the data were compared with those of age-matched non-exercised OLETF and non-diabetic Long-Evans Tokushima Otsuka rats (LETO).

Results

In the soleus muscle, a higher percentage of type I fibres was observed in non-exercised OLETF rats compared with LETO rats, and there were no type IIA fibres in non-exercised OLETF rats. In the plantaris muscle, a higher percentage of type IIB fibres and a lower percentage of type I and type IIA fibres were observed in non-exercised OLETF rats compared with LETO rats. In contrast, there were no differences in the fibre-type distribution of soleus and plantaris muscles between exercised OLETF and LETO rats. The body weight and type I fibre percentage of the soleus muscle were related to the running distance in exercised OLETF rats. White adipose tissue weight, HbA1c and blood insulin and glucose concentrations were lower in exercised OLETF rats than in non-exercised OLETF rats, irrespective of the running distance. There was a difference in the gene-expression pattern of the soleus muscle among LETO rats, non-exercised OLETF and exercised OLETF rats.

Conclusion

Running exercise can inhibit diabetes-associated type shifting of fibres, which is more apparent with postnatal growth, in skeletal muscles of diabetic OLETF rats, as a result of mRNA expression change in muscle.

Related Topics

    loading  Loading Related Articles