Evaluation of the Radioprotective Effect of Liv 52 in Mice

    loading  Checking for direct PDF access through Ovid

Abstract

Liv 52 is a mixture of botanicals that is used clinically to treat various hepatic disorders. In this study, the radioprotective activity of Liv 52 was evaluated in mice given whole-body exposure to different doses of γ-radiation. In addition, a series of studies was conducted to explore the mechanism of radioprotection. Radioprotection was evaluated by the ability of Liv 52 to reduce both the frequency of bone marrow micronucleated erythrocytes and the lethality produced by 60Co γ-radiation. Mice were treated by oral gavage once daily for seven consecutive days with 500 mg/kg body weight Liv 52 or carboxymethylcellulose vehicle prior to radiation. Micronucleated polychromatic erythrocytes (MPCEs), micronucleated normochromatic erythrocytes (MNCEs), and the PCE/NCE ratio were measured at 0.25-14 days after exposure to whole-body radiation doses of 0, 0.5, 1.5, 3.0, or 4.5 Gy; animal survival was monitored after doses of 7, 8, 9, 10, 11, or 12 Gy. Pretreatment of mice with Liv 52 significantly reduced the frequency of radiation-induced MPCEs and MNCEs. Irradiation reduced the PCE/NCE ratio in a doserelated manner for up to 7 days following irradiation; Liv 52 pretreatment significantly mitigated against these reductions. Liv 52 treatment also reduced the symptoms of radiation sickness and increased mouse survival 10 and 30 days after irradiation. Liv 52 pretreatment elevated the levels of reduced glutathione (GSH), increased the activities of glutathione transferase, GSH peroxidase, GSH reductase, superoxide dismutase, and catalase, and lowered lipid peroxidation (LPx) and the activities of alanine aminotransferase and aspartate aminotransferase 30 min after exposure to 7 Gy of γ-radiation. Liv 52 pretreatment also reduced radiation-induced LPx and increased GSH concentration 31 days following the exposure. The results of this study indicate that pretreatment with Liv 52 reduces the genotoxic and lethal effects of γ-irradiation in mice and suggest that this radioprotection may be afforded by reducing the toxic effects of the oxidative products of irradiation.

Related Topics

    loading  Loading Related Articles