Evaluation of Micronucleus Frequencies and DNA Damage in Glass Workers Exposed to Arsenic

    loading  Checking for direct PDF access through Ovid


Arsenic (As) is a known human carcinogen; however, very little is known about the health consequences of occupational exposure to As. In the present study, we assessed the genotoxic damage in the blood cells and in the buccal cells of south Indian glass factory workers who are occupationally exposed to As. The As content in the whole blood of 200 workers and 165 controls was evaluated with inductively coupled plasma mass spectrometry. Blood leukocytes from the subjects were monitored for the level of DNA damage using the Comet assay (mean comet tail length); buccal cells were used to determine the frequency of micronuclei (MN). The mean As concentration was significantly higher in the workers (56.76 μg/L) than in the controls (11.74 μg/L) (P < 0.001). The workers also had increased frequencies of MN in the buccal cells and increased levels of DNA damage in leukocytes compared to the controls (P < 0.001). There were significant correlations between the genotoxicity endpoints that were evaluated and blood As concentration, smoking, age, and the duration of working in the factory. Also, a significant correlation was observed between the frequency of MN and comet tail-length for the worker samples. Our findings indicate that chronic occupational exposure to As is genotoxic and that the Comet assay and micronucleus test are useful assays for evaluating genotoxicity in humans occupationally exposed to As.

Related Topics

    loading  Loading Related Articles