RECENT ADVANCES IN BOLIDE ENTRY MODELING: A BOLIDE POTPOURRI


    loading  Checking for direct PDF access through Ovid

Abstract

In this paper, we will review recent research on numerous aspects of bolide entry into a planetary atmosphere, including such topics as the entry dynamics, energetics, ablation, deceleration, fragmentation, luminosity, mechanical wave generation processes, a total (panchromatic) power budget including differential and integral efficiencies vs. time, etc. Fragmentation, triggered by stagnation pressures exceeding the bolide breaking strength, has been included with subsequent wake behavior in either a collective or non-collective behavior limit. We have also utilized the differential panchromatic luminous efficiency of ReVelle and Ceplecha (2002c, Proceedings of Asteroids, Comets, Meteors ACM 2002, 29 July–2August, 285–288) to compute bolide luminosity. In addition we also introduce the concept of the differential and integral acoustic/infrasonic efficiency and generalized it to the case of mechanical wave efficiency including internal atmospheric gravity waves generated during entry. Unlike the other efficiencies which are assumed to be a constant multiple of the luminous efficiency, the acoustic efficiency is calculated independently using a 'first principles' approach. All of these topics have been pursued using either a homogeneous or a porous meteoroid model with great success. As a direct result, porosity seems to be a rather good possibility for explaining anomalous meteoroid behavior in the atmosphere.

    loading  Loading Related Articles