A peculiar relationship between genetic diversity and adaptability in invasive exotic species: bluegill sunfish as a model species

    loading  Checking for direct PDF access through Ovid


A peculiar relationship exists between population genetics and invasion biology. Introduced populations often suffer a depletion of genetic variation, but they can persist and adapt to new environments. Here, we show that this relationship is observed in bluegill sunfish (Lepomis macrochirus), an invasive exotic fish in Japan. Genetic analysis using selectively neutral genetic markers reconfirmed that the bluegill introduced into Japan from the United States in 1960 had a single origin with only 15 founders. The analysis also shows that in the process of range expansion, the introduced bluegills experienced severe depletion of genetic diversity due to the founder effect and/or genetic drift. Despite such a decline in genetic diversity, the bluegill populations exhibited a divergent feeding morphology in response to the colonized environments. Such a morphological divergence can facilitate prey exploitation, thereby causing a greater negative impact on native prey resources. Further, in a trophically polymorphic bluegill population in Lake Biwa, physiological characteristics and genetic structures of the intestinal bacterial communities were associated with the difference in diet among the trophic morphs in the host bluegill population. This empirical evidence suggests that despite the severe decline in genetic diversity, the introduced bluegill populations rapidly adapted to the new environment and formed diverse functional relationships with the native bacterial community. Thus, these findings suggest that genetic variation at selectively neutral markers does not always predict adaptability and invasiveness in introduced populations.

    loading  Loading Related Articles