Estimating Spatial Patterns of Effluent Exposure Concentrations in Direct Toxicity Assessment Studies

    loading  Checking for direct PDF access through Ovid

Abstract

Hydrodynamic models of differing scale and complexity were used to estimate spatial patterns of effluent concentration in discharge plumes in the River Esk and the Lower Tees Estuary. The output from the Tees model was used, in conjunction with measurements of toxicity determined in short-term oyster embryo tests, to predict contours/zones of toxicity in the estuary associated with effluent discharges from four chemical processing sites. One of the discharges also combined the input from a municipal sewage treatment works. The models appeared to be effective in predicting patterns of dilution and dispersion of the effluent discharges in the respective receiving environments. Confirmation of the predictive capabilities of the Tees model was achieved by comparing predicted and measured toxicity in different regions of the plumes associated with the four discharges. Differences between predicted and measured toxicity for two of the four discharges were explicable in terms of failure to take account of the effects of real-time wind conditions when test samples were collected or overlap of adjacent discharge plumes. Suggested refinements to the models and measurement of effluent toxicity would further enhance the utility of this approach for determining the extent and significance of the effects of effluent discharges in receiving environments.

Related Topics

    loading  Loading Related Articles