Genetic diversity and structure of an estuarine fish (Fundulus heteroclitus) indigenous to sites associated with a highly contaminated urban harbor

    loading  Checking for direct PDF access through Ovid


Intense selection on isolated populations can cause loss of genetic diversity, which if persistent, reduces adaptive potential and increases extinction probability. Phenotypic evidence of inherited tolerance suggests that polychlorinated biphenyls (PCBs), have acted as strong selective agents on populations of a non-migratory fish, Fundulus heteroclitus, indigenous to heavily contaminated sites. To evaluate population genetic structure and test for effects of intense, multi-generational PCB contamination on genetic diversity, we used AFLP analysis on fish collected from six sites along the east coast of North America that varied widely in PCB contamination. The sites included a heavily contaminated urban harbor (New Bedford, MA), an adjacent moderately contaminated sub-estuary (Buzzards Bay, MA), and an uncontaminated estuary 60 km away (Narragansett, RI). AFLP markers distinguished populations at moderate and small scales, suggesting genetic differentiation at distances of 2 km or less. Genetic diversity did not differ across the study sites. Genome-wide diversity may have been preserved because of large effective population sizes and/or because the mechanism for genetic adaptation to these contaminants affected only a small number of loci. Alternatively, loss in diversity may have been restored with moderate levels of migration and relatively short generation time for this species.

Related Topics

    loading  Loading Related Articles