Influence of cereal leaf epicuticular wax on Diuraphis noxia probing behavior and nymphoposition

    loading  Checking for direct PDF access through Ovid


The effect of cereal leaf surface wax on Diuraphis noxia (Mordvilko), the Russian wheat aphid, probing behavior and nymphoposition was evaluated. Ultrastructure of leaf epicuticular wax from wheat (Triticum aestivum L.) c.v. ‘Arapahoe’ and ‘Halt’ was different from barley (Hordeum vulgare L.) c.v. ‘Morex’, and oat (Avena sativa L.) c.v. ‘Border’. Both wheat cultivars had similar rod-shaped epicuticular wax, while barley and oat plants had flakes. The chemical composition comparison of gas chromatograms also indicated that the extract of the two wheat cultivars had similar pattern of peaks, while the barley and oat leaves had similar peaks. Cereal variety significantly affected aphid probing behavior (P < 0.05), but wax removal using ethyl ether swab did not (P > 0.05). Aphids initiated significantly more probes on Border oat leaves than on Morex barley irrespective of wax removal, although total probing duration per aphid was not significantly different among the four cereals examined. Accumulative salivation duration per aphid on oat leaves with wax was significantly longer than other cereal leaves with wax, while accumulative ingestion duration per aphid on Arapahoe wheat and Morex barley was significantly longer than on oat. Nymphoposition of D. noxia on cereal leaves maintained on the benzimidazole-agar medium showed that aphids produced a greater number of nymphs on Morex barley and less on Border oat leaves, although wax removal did not affect aphid nymphoposition. Removal of leaf epicuticular waxes from the 4 cereal genotypes using ethyl ether swab indicated that the influence of wax on plant resistance to D. noxia probing and reproduction was limited. Morex barley was the most favorable, while Border oat was the least favorable cereal host of D. noxia.

Related Topics

    loading  Loading Related Articles