Protecting against ischaemic stroke in rats by heat shock protein 20-mediated exercise

    loading  Checking for direct PDF access through Ovid

Abstract

Background

Exercise preconditioning (EP+) has been widely accepted as a being of safe and effective preventive measure for stroke. The purpose of this study was to investigate whether EP+ improves outcomes of ischaemic stroke by promoting neuronal and glial expression of heat shock protein (HSP) 20.

Materials and methods

Adult male Sprague–Dawley rats (288 in number) were used to investigate the contribution of HSP20-containing neurons and HSP20-containing glial cells in the exercise-mediated neuroprotection in the stroke condition using middle cerebral artery occlusion.

Results

Exercise preconditioning, in addition to increasing the numbers of both the HSP20-containg neurons (88 ± 8 vs. 43 ± 4; n = 8 each group; P < 0·05) and the HSP20-containg astrocytes (102 ± 10 vs. 56 ± 5; n = 8; P < 0·05) significantly attenuated stroke-induced brain infarct (140 ± 9 vs. 341 ± 20 mm3; n = 8 per group; P < 0·01), neuronal apoptosis (20 ± 5 vs. 87 ± 7; n = 8 per group; n = 8; P < 0·01), glial apoptosis (29 ± 5 vs. 101 ± 4; n = 8; P < 0·01), and neurological deficits (6·6 ± 0·3 vs. 11·7 ± 0·8; n = 8 per group; P < 0·01). Reducing the numbers of both HSP20-containing neurons and HSP20-contaiing glia by intracerebral injection of pSUPER small interfering RNAι expressing HSP20 significantly reversed the beneficial effects of EP+ in attenuating stroke-induced cerebral infarct, neuronal and glial apoptosis, and neurological deficits.

Conclusions

The numbers of both the HSP20-containing neurons and the HSP20-containing glia inversely correlated with the outcomes of ischaemic stroke. In addition, preischaemic treadmill exercise improves outcomes of ischaemic stroke by increasing the numbers of both the HSP20-containing neurons and the HSP20-containing glia.

Related Topics

    loading  Loading Related Articles