Ventricular dyssynchrony assessed by gated myocardial perfusion SPECT using a geometrical approach: a feasibility study

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose

Left ventricular dyssynchrony may predict response to cardiac resynchronization therapy and may well predict adverse cardiac events. Recently, a geometrical approach for dyssynchrony analysis of myocardial perfusion scintigraphy (MPS) was introduced. In this study the feasibility of this geometrical method to detect dyssynchrony was assessed in a population with a normal MPS and in patients with documented ventricular dyssynchrony.

Methods

For the normal population 80 patients (40 men and 40 women) with normal perfusion (summed stress score ≤2 and summed rest score ≤2) and function (left ventricular ejection fraction 55-80%) on MPS were selected; 24 heart failure patients with proven dyssynchrony on MRI were selected for comparison. All patients underwent a 2-day stress/rest MPS protocol. Perfusion, function and dyssynchrony parameters were obtained by the Corridor4DM software package (Version 6.1).

Results

For the normal population time to peak motion was 42.8 ± 5.1% RR cycle, SD of time to peak motion was 3.5 ± 1.4% RR cycle and bandwidth was 18.2 ± 6.0% RR cycle. No significant gender-related differences or differences between rest and post-stress acquisition were found for the dyssynchrony parameters. Discrepancies between the normal and abnormal populations were most profound for the mean wall motion (p value <0.001), SD of time to peak motion (p value <0.001) and bandwidth (p value <0.001).

Conclusion

It is feasible to quantify ventricular dyssynchrony in MPS using the geometrical approach as implemented by Corridor4DM.

Related Topics

    loading  Loading Related Articles