Pre- and post-synaptic muscarinic receptors in thin slices of rat adrenal gland

    loading  Checking for direct PDF access through Ovid

Abstract

The effects of activation of muscarinic receptors on chromaffin cells and splanchnic nerve terminals were studied in a rat adrenal slice preparation. In chromaffin cells, muscarine induced a transient hyperpolarization followed by a depolarization associated with cell spiking. The hyperpolarization was blocked by charybdotoxin (1 μm) and tetraethylammonium chloride (TEA, 1 mm), but was not affected by 200 μm Cd2+ or removal of external Ca2+, consistent with activation of BK channels. This would follow internal Ca2+ mobilization, as shown by Ca2+ imaging with fura-2 on isolated chromaffin cells in culture. Under voltage-clamp, outward BK currents were insensitive to MT3 toxin, a specific muscarinic m4 receptor antagonist. In contrast, muscarine-induced depolarization was due to a m4 receptor-mediated inward current blocked by MT3 toxin. This current was permeable to cations and was associated with Ca2+ entry and subsequently, Ca2+-induced Ca2+ release. Finally, both muscarine (25 μm) and oxotremorine (10 μm) decreased the amplitude and frequency of KCl-evoked excitatory postsynaptic currents, without affecting quantal size, consistent with a presynaptic inhibitory effect. Taken together, our data suggest that activation of m4 and probably m3 muscarinic receptors results in a strong, long-lasting excitation of chromaffin cells, as well as an uncoupling of synaptic inputs onto these cells.

Related Topics

    loading  Loading Related Articles