Expression of trophinin and bystin identifies distinct cell types in the germinal zones of adult rat brain

    loading  Checking for direct PDF access through Ovid

Abstract

In the adult brain, the subventricular zone (SVZ) is one of the regions where active neurogenesis occurs. Relatively few specific markers are available to distinguish different types of cells in the SVZ and rostral migratory stream (RMS) of adult brain. Here, we showed that trophinin and bystin, both of which are required for early embryo implantation during development, were expressed in the SVZ and RMS of the adult rat brain, but not in the brain of embryos and early postnatal animals. Trophinin-expressing cells were immunopositive for both Ki-67 and nestin in the SVZ. Some of the trophinin-positive cells did not express either the type A cell marker polysialylated weakly adhesive form of the neural cell adhesion molecule (PSA-NCAM) or the type B cell marker glial fibrillary acidic protein (GFAP). Double-label immunohistochemistry revealed that bystin-positive cells co-expressed GFAP, Ki-67 and nestin, but not PSA-NCAM, suggesting that they are likely type B cells. Intracerebroventricular infusion of cytosine-β-D-arabiofuranoside (Ara-C) eliminated trophinin-positive cells in the SVZ. Following its depletion, however, the remaining bystin-positive cells continued to divide and generate actively dividing trophinin-positive cells that were negative for PSA-NCAM, leading to reconstruction of SVZ network. These characteristics indicate that this subset of trophinin-positive cells in the SVZ is type C cells. Conversely in the RMS, trophinin co-localized with nestin and PSA-NCAM, suggesting that it is expressed in neuroblasts. Cultured neural precursor cells derived from the adult SVZ also expressed both trophinin and bystin. These findings provide insight into the molecular basis of adult neurogenesis in the SVZ and RMS.

Related Topics

    loading  Loading Related Articles