Exposure to hypergravity during specific developmental periods differentially affects metabolism and vestibular reactions in adult C57BL /6j mice

    loading  Checking for direct PDF access through Ovid


The development of the posturo-motor control of movement is conditioned by Earth's gravity. Missing or altered gravity during the critical periods of development delays development and induces durable changes in the vestibular, cerebellar, or muscular structures, but these are not consistently mirrored at a functional level. The differences in the time schedule of vestibular and motor development could contribute to this inconstancy. To investigate the influence of gravity on the development of vestibular and locomotor functions, we analysed the performance of adult mice subjected to hypergravity during the time covering either the vestibular or locomotor development. The mice were centrifuged at 2gfrom embryonic day (E) 0 to postnatal day (P) 10 (PRE), from P10 to P30 (POST), from E0 to P30 (FULL), and from E7 to P21. Their muscular force, anxiety level, vestibular reactions, and aerobic capacity during treadmill training were then evaluated at the age of 2 and 6 months. The performance of young adults varied in relation to the period of exposure to hypergravity. The mice that acquired locomotion in hypergravity (POST and FULL) showed a lower forelimb force and delayed vestibular reactions. The mice centrifuged from conception to P10 (PRE) showed a higher aerobic capacity during treadmill training. The differences in muscular force and vestibular reactions regressed with age, but the metabolic changes persisted. These results confirmed that early exposure to hypergravity induces qualitative changes depending on the period of exposure. They validated, at a functional level, the existence of several critical periods for adaptation to gravity.

Related Topics

    loading  Loading Related Articles