The role of glutamate in the morphological and physiological development of dendritic spines

    loading  Checking for direct PDF access through Ovid

Abstract

Dendritic spines form the postsynaptic half of the synapse but how they form during CNS development remains uncertain, as are the factors that promote their morphological and physiological maturation. One hypothesis posits that filopodia, long motile dendritic processes that are present prior to spine formation, are the precursors to spines. Another hypothesis posits that they form directly from the dendritic shaft. We used microphotolysis of caged glutamate to stimulate individual dendritic processes in young hippocampal slice cultures while recording their morphological and physiological responses. We observed that brief trains of stimuli delivered to immature processes triggered morphological changes within minutes that resulted, in about half of experiments, in a more mature, spine-like appearance such as decreased spine neck length and increased spine head width. We also observed that glutamate-induced inward currents elicited from immature processes were mostly or entirely mediated by NMDARs, whereas responses in those processes with a more mature morphology, regardless of actual developmental age, were mediated by both AMPARs and NMDARs. Consistent with this observation, glutamate-induced morphological changes were largely, but not entirely, prevented by blocking NMDARs. Our observations thus favor a model in which filopodia in the developing nervous system sense and respond to release of glutamate from developing axons, resulting in physiological and morphological maturation.

Dendritic spines form the postsynaptic half of the synapse but how they form during CNS development remains uncertain, as are the factors that promote their morphological and physiological maturation. One hypothesis posits that filopodia, long motile dendritic processes that are present prior to spine formation, are the precursors to spines.

Related Topics

    loading  Loading Related Articles