Development and characterization of docetaxel-loaded lecithin-stabilized micellar drug delivery system (LsbMDDs) for improving the therapeutic efficacy and reducing systemic toxicity

    loading  Checking for direct PDF access through Ovid


Graphical abstractIn the present study, we attempted to develop a lecithin-stabilized micellar drug delivery system (LsbMDDs) for loading docetaxel (DTX) to enhance its therapeutic efficacy and minimize systemic toxicity. A novel DTX-loaded LsbMDDs was optimally prepared by a thin-film hydration method and then hydrated with a lecithin nanosuspension while being subjected to ultrasonication. Physical characteristics of the optimized DTX-loaded LsbMDDs formulations were examined and found to have a mean size of <200 nm, an encapsulation efficiency of >90%, and drug loading of >6% with stability at room temperature and at 4 °C being longer than 2 and 7 days, respectively. The in vitro release of DTX from the DTX-loaded LsbMDDs was slower than that from the generic product of DTX (Tynen®). A cell viability assay demonstrated that the LsbMDDs showed better cytotoxicity than Tynen® against CT26 cancer cells. The in vivo antitumor efficacy of the DTX-loaded LsbMDDs was observed to be better than that of Tynen® in a CT26 tumor-bearing mice model. A high-dose regimen of the DTX-loaded LsbMDDs formulation showed greater inhibition of DU145 tumor growth than did Tynen®, but with less to similar systemic toxicity. An in vivo study also showed that a greater amount of drug was able to accumulate in the tumor site with the DTX-loaded LsbMDDs, and its maximal tolerable doses for single and repeated injections were 2–2.5-fold higher than those of Tynen®. In conclusion, the LsbMDDs could be a promising high drug-loaded nanocarrier for delivering hydrophobic chemotherapeutic agents that can enhance the efficacy of chemotherapy and reduce systemic toxicity.

    loading  Loading Related Articles