Influence of membrane material on the production of colloidal emulsions by premix membrane emulsification

    loading  Checking for direct PDF access through Ovid

Abstract

Premix membrane emulsification is a possibility to produce colloidal emulsions as carrier systems for poorly water soluble drugs. During the extrusion of a coarse pre-emulsion through a porous membrane, the emulsion droplets are disrupted into smaller droplets. The influence of the membrane material on the emulsification success was investigated in dependence on the emulsifier. Premixed medium chain triglyceride (MCT) emulsions stabilized with five different emulsifiers were extruded through seven different hydrophilic polymeric membrane materials with pore sizes of 200 nm. The resulting emulsions differed strongly in particle size and particle size distribution with a range of median particle sizes between 0.08 μm and 11 μm. The particle size of the emulsions did not depend mainly on the structure or thickness of the membrane but on the combination of emulsifier and membrane material. Contact angle measurements indicated that the wetting of the membrane with the continuous phase of the emulsion was decisive for achieving emulsions with colloidal particle sizes. The type of dispersed phase was of minor importance as basically the same results were obtained with peanut oil instead of MCT. To prove the assumption that only sufficiently hydrophilic membrane materials led to emulsions with colloidal particle sizes, two membrane materials were hydrophilized by plasma treatment. After hydrophilization, the emulsifying process led to emulsions with smaller particle sizes. The use of an alumina membrane (Anodisc®) improved the process even more. With this type of membrane, emulsions with a median particle size below 250 nm and a narrow particle size distribution could be obtained with all investigated emulsifiers.

Related Topics

    loading  Loading Related Articles