pH-sensitive prodrug conjugated polydopamine for NIR-triggered synergistic chemo-photothermal therapy

    loading  Checking for direct PDF access through Ovid

Abstract

Graphical abstract

pH-Sensitive polymeric prodrug conjugated polydopamine nanoparticles for near-infrared light-triggered synergistic chemo-photothermal therapy.

Combination of chemotherapy with photothermal therapy (PTT) demonstrate highly desirable for efficient medical treatment of tumor. At present works, camptothecin (CPT)-containing polymeric prodrug (PCPT) were fabricated by polymerization of a pH-sensitive camptothecin (CPT) prodrug monomer and MPC using reversible addition-fragmentation transfer (RAFT) strategy. The pH-sensitive polymeric prodrug was tethered onto surface of polydopamine (PDA) nanoparticles by amidation chemistry for combination of chemotherapy with photothermal therapy. Specifically, the active CPT quickly released from the multifunctional nanoparticles in acidic microenvironment ascribe to the cleavage of bifunctional silyl ether linkage. Meanwhile, the PDA could convert the near infrared (NIR) light energy into heat with high efficiency, which makes the resulted nanoparticles an effective platform for photothermal therapy. In vitro analysis confirmed that the PDA@PCPT nanoparticles could be efficiently uptaked by HeLa cells and deliver CPT into the nuclei of cancer cells. The cell viability assays indicated an evident in vitro cytotoxicity to HeLa cancer cells under 808 nm light irradiation. Significant tumor regression was also observed in the tumor-bearing mice model with the combinational therapy provided from the PDA@PCPT nanoparticles. The PDA@PCPT multifunctional system which was achieved by a facile route should be a potential candidate in the anti-cancer field due to the synergistic therapeutic effect, which is superior to any single approach.

Related Topics

    loading  Loading Related Articles