Phospholipase A2-susceptible liposomes of anticancer double lipid-prodrugs

    loading  Checking for direct PDF access through Ovid

Abstract

A novel approach to anticancer drug delivery is presented based on lipid-like liposome-forming anticancer prodrugs that are susceptible to secretory phospholipase A2 (sPLA2) that is overexpressed in several cancer types. The approach provides a selective unloading of anticancer drugs at the target tissues, as well as circumvents the necessity for “conventional” drug loading. In our attempts to improve the performance of the liposomes in vivo, several PEGylated and non-PEGylated liposomal formulations composed of a retinoid prodrug premixed with the sPLA2-hydrolyzable DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) were prepared. Besides favorably modifying the physicochemical properties of the liposomes, the incorporation of DPPC and PEG-lipids in the liposomes should substantially enhance the enzymatic activity, as concluded from literature. In addition, one can reap benefits from the presumed permeability enhancing effect of the liberated fatty acids and lysolipids. The size distribution of the prepared liposomes as well as their phase behavior, enzymatic hydrolysis, and cytotoxicity, in the presence and absence of sPLA2, were determined. The liposomes were around 100 nm in diameter and in the gel/fluid coexistence region at 37 °C. The enzymatic hydrolysis of the prodrug was pronouncedly accelerated upon the premixing with DPPC, and the hydrolysis was further enhanced by PEGylation. Interestingly, the faster hydrolysis of the prodrug and the released fatty acids and lysolipids from DPPC did not improve the cytotoxicity of the mixture; the effect of combining the prodrug with DPPC was additive and not synergistic. The data presented here question the significance of the permeability enhancing effects claimed for fatty acids and lysolipids at the target cell membrane, and whether these effects can be achieved using physiologically achievable concentrations of fatty acids and lysolipids.

Related Topics

    loading  Loading Related Articles