Lecithin based lamellar liquid crystals as a physiologically acceptable dermal delivery system for ascorbyl palmitate

    loading  Checking for direct PDF access through Ovid

Abstract

Liquid crystalline systems with a lamellar structure have been extensively studied as dermal delivery systems. Ascorbyl palmitate (AP) is one of the most studied and used ascorbic acid derivatives and is employed as an antioxidant to prevent skin aging. The aim of this study was to develop and characterize skin-compliant dermal delivery systems with a liquid crystalline structure for AP. First, a pseudoternary phase diagram was constructed using Tween 80/lecithin/isopropyl myristate/water at a Tween 80/lecithin mass ratio of 1/1, and the region of lamellar liquid crystals was identified. Second, selected unloaded and AP-loaded lamellar liquid crystal systems were physicochemically characterized with polarizing optical microscopy, small-angle X-ray scattering, differential scanning calorimetry, and rheology techniques. The interlayer spacing and rheological parameters differ regarding quantitative composition, whereas the microstructure of the lamellar phase was affected by the AP incorporation, resulting either in additional micellar structures (at 25 and 32 °C) or being completely destroyed at higher temperature (37 °C). After this, the study was oriented towards in vitro cytotoxicity evaluation of lamellar liquid crystal systems on a keratinocyte cell line. The results suggest that the lamellar liquid crystals that were developed could be used as a physiologically acceptable dermal delivery system.

Related Topics

    loading  Loading Related Articles