Regenerated cellulose capsules for controlled drug delivery: Part III. Developing a fabrication method and evaluating extemporaneous utility for controlled-release

    loading  Checking for direct PDF access through Ovid


In this article, we describe a method to utilize cellulose dissolved in dimethyl sulfoxide and paraformaldehyde solvent system to fabricate two-piece regenerated cellulose hard shell capsules for their potential use as an oral controlled drug delivery a priori vehicle. A systematic evaluation of solution rheology as well as resulting capsule mechanical, visual and thermal analysis was performed to develop a suitable method to repeatedly fabricate RC hard shell capsule halves. Because of the viscoelastic nature of the cellulose solution, a combination of dip-coating and casting method, herein referred to as dip-casting method, was developed. The dip-casting method was formalized by utilizing two-stage 22 full factorial design approach in order to determine a suitable approach to fabricate capsules with minimal variability. Thermal annealing is responsible for imparting shape rigidity of the capsules. Proof-of-concept analysis for the utility of these capsules in controlled drug delivery was performed by evaluating the release of KCl from them as well as from commercially available USP equivalent formulations. Release of KCl from cellulose capsules was comparable to extended release capsule formulation.

Related Topics

    loading  Loading Related Articles