Effects of cyclodextrins on the structure of LDL and its susceptibility to copper-induced oxidation

    loading  Checking for direct PDF access through Ovid

Abstract

Cyclodextrins (CDs) have long been widely used as drug/food carriers and were recently developed as drugs for the treatment of diseases (e.g. Niemann-Pick C1 and cancers). It is unknown whether cyclodextrins may influence the structure of low-density lipoprotein (LDL), its susceptibility to oxidation, and atherogenesis. In this study, four widely used cyclodextrins including α-CD, γ-CD, and two derivatives of β-CD (HPβCD and MβCD) were recruited. Interestingly, agarose gel electrophoresis (staining lipid and protein components of LDL with Sudan Black B and Coomassie brilliant blue, respectively but simultaneously) shows that cyclodextrins at relatively high concentrations caused disappearance of the LDL band and/or appearance of an additional protein-free lipid band, implying that cyclodextrins at relatively high concentrations can induce significant electrophoresis-detectable lipid depletion of LDL. Atomic force microscopy (AFM) detected that MβCD (as a representative of cyclodextrins) induced size decrease of LDL particles in a dose-dependent manner, further confirming the lipid depletion effects of cyclodextrins. Moreover, the data from agarose gel electrophoresis, conjugated diene formation, MDA production, and amino group blockage of copper-oxidized LDL show that cyclodextrins can impair LDL susceptibility to oxidation. It implies that cyclodextrins probably help to inhibit atherogenesis by lowering LDL oxidation.

Related Topics

    loading  Loading Related Articles