Novel therapeutic drug identification and gene correlation for fatty liver disease using high-content screening: Proof of concept

    loading  Checking for direct PDF access through Ovid

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a problem in obese people caused by increasing intake of high-calorie food such as fructose implicated in the elevated prevalence. It is necessary to identify novel drugs to develop effective therapies. In this study, we combined LOPAC® (The Library of Pharmacologically Active Compounds) and High-Content screening to identify compounds that significantly reduced intracellular lipid droplets (LD) after high fat medium (HFM) treatment. Among 1280 compounds, we identified 239 compounds that reduced LD by >50%. Of these, 17 maintained cell viability. Nine of them were selected for validation using normal primary hepatocytes, of which five compounds showed dose-dependent efficacy. Whole genome transcriptomic network analysis was performed to construct the underlying regulatory network. There were 831 (711 up-regulated and 120 down-regulated genes) and 3480 (2009 up-regulated and 1471 down-regulated genes) genes that showed a significant change (>2-fold; p < 0.05) after 12 and 24 h HFM treatment, respectively. Gene enrichment and pathway analysis showed several immune responses mediated by MIF, IL-17, TLR, and IL-6. These compounds modulate lipogenesis via GSK3β and CREB1, which is followed by an alteration in the expression of several downstream genes related to hepatocellular carcinoma and hepatitis. CREB1 is a core transcription factor and may be a potential therapeutic target for liver disease. In conclusion, this proof of concept provides a strategy for identifying novel drugs for treatment of fatty liver disease as well as elucidates their underlying mechanisms. This research provides opportunity for developing future pharmaceutical therapeutics.

Related Topics

    loading  Loading Related Articles