Differentiation of human ameloblast-lineage cells in vitro

    loading  Checking for direct PDF access through Ovid

Abstract

Previous studies have shown that ameloblast-like cells can be selectively cultured from the enamel organ in a serum-free medium with low calcium concentrations. The purpose of this study was to further characterize this culture system to identify differentiated ameloblast-lineage cells. Tooth organs from 19–24-wk-old fetal cadavers were either frozen and cryosectioned for immunostaining, or digested in collagenase/dispase for cell culture. The cells were grown in keratinocyte media supplemented with 0.05 mM calcium, and characterized by morphology and immunofluorescence. Epithelial clones with two distinct morphologies, including smaller cobblestone-shaped cells and larger (5–15 times in size) rounded cells, began to form between day 8 and day 12 after culture. The cobblestone-shaped cells continued to proliferate in culture, while the larger cells proliferated slowly or not at all. These larger cells formed filopodia, usually had two or more nuclei and a radiating cytoplasm at the cell margin, and were more abundant with increasing time in culture. Both cell types stained for cytokeratin 14, and the larger cells appeared more differentiated, showing stronger staining for amelogenin and ameloblastin. Immunofluorescence of the tooth bud sections showed staining for these matrix proteins as ameloblasts differentiated from the inner enamel epithelium. These results show the successful culture of differentiating ameloblast-lineage cells, and lay a foundation for use of these cells to further understand ameloblast biology with application to tooth enamel tissue engineering.

Related Topics

    loading  Loading Related Articles