Growth of ameloblast-lineage cells in a three-dimensional Matrigel environment

    loading  Checking for direct PDF access through Ovid

Abstract

Enamel organ epithelial cells grow in culture as two distinct cell populations – either stellate-shaped or polygonal-shaped cells. The polygonal cells have an ameloblast cell phenotype and are difficult to grow in culture beyond two passages. This study was designed to determine the effects of a Matrigel three-dimensional (3D) environment on polygonal cells, as compared with stellate cells, derived from porcine tooth enamel organ. Enamel organs were dissected free from the unerupted molars of 30-kg pigs and then grown in LCH-8e media, either with or without serum. Cells grown in serum-free media were primarily polygonal shaped, whereas cells grown in media containing serum were stellate shaped. Both types of cells were grown in a 3D Matrigel matrix. In addition, polygonal-shaped cells were mixed with hydroxyapatite powder and transplanted subcutaneously into nude mice. Polygonal-shaped epithelial cells formed cell groups, similar to epithelial pearls, both in vitro and in vivo. The stellate-shaped cells, in contrast, did not form similar structures, but remained suspended in the Matrigel and gradually disappeared from the culture. These results suggest that a Matrigel environment, rich in basement membrane and matrix proteins, selects for polygonal-shaped ameloblast-lineage cells and induces the formation of epithelial pearls.

Related Topics

    loading  Loading Related Articles