Specificity of archaeal caspase activity in the extreme halophileHaloferax volcanii

    loading  Checking for direct PDF access through Ovid


Caspase-like proteases are key initiators and executioners of programmed cell death (PCD), which is initiated by environmental stimuli and manifests in organisms ranging from unicellular microbes to higher eukaryotes.Archaeahad been absent from the caspase inheritance discussion due to a lack of gene homologues. We recently demonstrated extremely high, basal caspase-like catalytic activity in the model haloarcheon,Haloferax volcanii, which was linked to the cellular stress response and was widespread among diverseArchaea. Here, we rigorously tested the catalytic specificity of the observed archaeal caspase-like activities using hydrolytic assays with a diverse suite of protease substrates and inhibitors compared with known model serine and cysteine proteases (trypsin, cathepsin, papain, and human caspase-8). Our experiments demonstrate that exponentially growingH. volcaniipossesses a highly specific caspase-like activity that most closely resembles caspase-4, is preferentially inhibited by the pan-caspase inhibitor, zVAD-FMK, and has no cross-reactivity with other known protease families. Our findings firmly root the extremely high levels of caspase-like activity as the dominant proteolytic activity in this extreme haloarcheaon, thereby providing further support for housekeeping functions inHaloarchaea. Given the deep archaeal roots of eukaryotes, we suggest that this activity served as a foundation for stress pathways in higher organisms.

Related Topics

    loading  Loading Related Articles