Angiotensin II-Dependent Transcriptional Activation of Human Steroidogenic Acute Regulatory Protein Gene by a 25-kDa cAMP-Responsive Element Modulator Protein Isoform and Yin Yang 1

    loading  Checking for direct PDF access through Ovid

Abstract

Transcriptional activation of the steroidogenic acute regulatory protein (STAR) gene is a critical component in the angiotensin II (Ang II)-dependent increase in aldosterone biosynthesis in the adrenal gland. The purpose of this study was to define the molecular mechanisms that mediate the Ang II-dependent increase in STARD1 gene (STAR) expression in H295R human adrenocortical cells. Mutational analysis of the STAR proximal promoter revealed that a nonconsensus cAMP-responsive element located at −78 bp relative to the transcription start site (−78CRE) is required for the Ang II-stimulated STAR reporter gene activity. DNA immunoaffinity chromatography identified a 25-kDa cAMP-responsive element modulator isoform and Yin Yang 1 (YY1) as −78CRE DNA-binding proteins, and Ang II treatment of H295R cells increased expression of that 25-kDa CREM isoform. Small interfering RNA silencing of CREM and YY1 attenuated the Ang II-dependent increases in STAR reporter gene activity and STAR mRNA levels. Conversely, overexpression of CREM and YY1 in COS-1 cells resulted in transactivation of STAR reporter gene activity. Chromatin immunoprecipitation analysis demonstrated recruitment of CREM and YY1 to the STAR promoter along with increased association of the coactivator cAMP response element-binding protein-binding protein (CBP) and increased phosphorylated RNA polymerase II after Ang II treatment. Together our data reveal that the Ang II-stimulated increase in STAR expression in H295R cells requires 25 kDa CREM and YY1. The recruitment of these transcription factors to the STAR proximal promoter results in association of CBP and activation of RNA polymerase II leading to increased STAR transcription.

Related Topics

    loading  Loading Related Articles