Galectin-3 Activates PPARγ and Supports White Adipose Tissue Formation and High-Fat Diet-Induced Obesity

    loading  Checking for direct PDF access through Ovid

Abstract

Galectin-3, a β-galactoside-binding lectin, is elevated in obesity and type 2 diabetes mellitus, and metformin treatment reduces these galectin-3 levels. However, the role of galectin-3 in adipogenesis remains controversial. We found that 17-month-old galectin-3-deficient (lgals3−/−) mice had decreased body size and epididymal white adipose tissue (eWAT) without related inflammatory diseases when fed normal chow. Galectin-3 knockdown significantly reduced adipocyte differentiation in 3T3-L1 cells and also decreased the expression of peroxisome proliferator-activated receptor (PPAR)-γ, ccaat-enhancer-binding protein α, and ccaat-enhancer-binding protein β. Endogenous galectin-3 directly interacted with PPARγ, and galectin-3 ablation reduced the nuclear accumulation and transcriptional activation of PPARγ. After a 12-week high-fat diet (60% fat), lgals3−/− mice had lower body weight and eWAT mass than lgals3+/+ mice. Moreover, the expression of PPARγ and other lipogenic genes was drastically decreased in the eWAT and liver of lgals3−/− mice. We suggest that galectin-3 directly activates PPARγ and leads to adipocyte differentiation in vitro and in vivo. Furthermore, galectin-3 might be a potential therapeutic target in metabolic syndromes as a PPARγ regulator.

Related Topics

    loading  Loading Related Articles