β-Catenin Stabilization in Gonadotropes Impairs FSH Synthesis in Male Mice In Vivo

    loading  Checking for direct PDF access through Ovid

Abstract

Although classically considered a WNT signaling intermediary, β-catenin (CTNNB1) can also mediate GnRH induction of gonadotropin β-subunit (Fshb and Lhb) transcription in the murine gonadotrope-like cell line LβT2. Here, we assessed CTNNB1's role in gonadotropin synthesis in vivo. We used a Cre/lox approach to introduce both gain- and loss-of-function mutations in the murine Ctnnb1 gene in gonadotrope cells. Gonadotropin production and fertility were normal in Ctnnb1 knockout mice. Similarly, females harboring a deletion of exon 3 of Ctnnb1, which stabilizes the resulting CTNNB1 protein, showed normal fertility and gonadotropin synthesis. Interestingly, males with the activating CTNNB1-Δexon 3 mutation exhibited 50% reductions in FSH synthesis and secretion, without a corresponding change in LH. This selective regulation of FSH suggested an alteration in the activin/inhibin/follistatin system. Indeed, CTNNB1-Δexon 3 males showed a 60% increase in serum inhibin B levels, and in culture, their pituitaries exhibited a greater sensitivity to exogenous inhibin than controls. At the same time, pituitary, but not testicular, follistatin (Fst) expression was increased significantly in these mice. Castration normalized FSH levels in CTNNB1-Δexon 3 males to those seen in castrated controls. Paradoxically, pituitaries from CTNNB1-Δexon 3 males exhibited greater basal and activin-stimulated FSH synthesis in vitro. Similarly, CTNNB1-Δexon 3 overexpression potentiated activin A-induced murine Fshb promoter activity in LβT2 cells. Together, these results indicate that CTNNB1 is dispensable for gonadotropin synthesis in vivo. However, sustained CTNNB1 signaling potentiates activin-induced Fshb expression in gonadotropes, but this effect is overcome in vivo by enhanced inhibin feedback sensitivity and Fst expression.

Related Topics

    loading  Loading Related Articles