Enrichment of a dioxin-dehalogenating Dehalococcoides species in two-liquid phase cultures

    loading  Checking for direct PDF access through Ovid


SummaryEnrichment cultures capable of reductively dechlorinating 1,2,4-trichlorodibenzo-p-dioxin (1,2,4-TrCDD) were shown to dechlorinate 1,2,3-trichlorobenzene (1,2,3-TrCB) to 1,3-dichlorobenzene. To test if this activity can be used to enrich for dioxin-dechlorinating bacteria, a two-liquid phase cultivation with 200 mM 1,2,3-TrCB dissolved in hexadecane was established. During the dechlorination of 1,2,3-TrCB, the number of 1,2,4-TrCDD-dechlorinating bacteria increased by four orders of magnitude, eventually accounting for 11% of the total cell number. Characterization of the bacterial communities of the initial dioxin-dechlorinating culture and of the trichlorobenzene enrichments by restriction fragment length polymorphism (RFLP) analysis of cloned 16S rRNA genes revealed a proportional increase of nine different sequence types, one representing a Dehalococcoides strain. Inhibition of methanogens further enhanced the rate of chlorobenzene dehalogenation and also resulted in a rapid dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin that was applied via a hexadecane phase. The further enrichment was monitored by terminal RFLP, quantitative real-time PCR and microscopy, and aimed at the reduction of the accompanying non-dehalogenating populations by using different combinations of electron donors and the application of antibiotics. Hydrogen as the sole electron donor proved to be less efficient due to the co-enrichment of acetogens. The novel Dehalococcoides strain DCMB5 was enriched up to 50% by the cultivation with organic acids, hydrogen and vancomycin, and was finally purified by conventional isolation techniques.

    loading  Loading Related Articles