Reactive Species and Mitochondrial Dysfunction: Mechanistic Significance of 4-Hydroxynonenal


    loading  Checking for direct PDF access through Ovid

Abstract

Mitochondrial dysfunction is a global term used in the context of “unhealthy” mitochondria. In practical terms, mitochondria are extremely complex and highly adaptive in structure, chemical and enzymatic composition, subcellular distribution and functiona interaction with other components of cells. Consequently, altered mitochondrial properties that are used in experimental studies as measures of mitochondrial dysfunction often provide little or no distinction between adaptive and maladaptive changes. This is especially a problem in terms of generation of oxidant species by mitochondria, wherein increased generation of superoxide anion radical (OSymbol) or hydrogen peroxide (H2O2) is often considered synonymously with mitochondrial dysfunction. However, these oxidative species are signaling molecules in normal physiology so that a change in production or abundance is not a good criterion for mitochondrial dysfunction. In this review, we consider generation of reactive electrophiles and consequent modification of mitochondria proteins as a means to define mitochondrial dysfunction. Accumulated evidence indicates that 4-hydroxynonenal (HNE) modification of proteins reflects mitochondrial dysfunction and provides an operational criterion for experimental definition of mitochondrial dysfunction. Improved means to detect and quantify mitochondrial HNE-protein adduct formation could allow its use for environmental health risk assessment. Furthermore, application of improved mass spectrometry-based proteomic methods will lead to further understanding of the critica targets contributing to disease risk. Environ. Mol. Mutagen. 51:380-390, 2010.

    loading  Loading Related Articles