Linking isoprenoidal GDGT membrane lipid distributions with gene abundances of ammonia-oxidizingThaumarchaeotaand uncultured crenarchaeotal groups in the water column of a tropical lake (Lake Challa, East Africa)

    loading  Checking for direct PDF access through Ovid


Stratified lakes are important reservoirs of microbial diversity and provide habitats for niche differentiation ofArchaea. In this study, we used a lipid biomarker/DNA-based approach to reveal the diversity and abundance ofArchaeain the water column of Lake Challa (East Africa). Concentrations of intact polar lipid (IPL) crenarchaeol, a specific biomarker ofThaumarchaeota, were enhanced (1 ng l−1) at the oxycline/nitrocline. The predominance of the more labile IPL hexose-phosphohexose crenarchaeol indicated the presence of an actively living community ofThaumarchaeota. Archaeal 16S rRNA clone libraries revealed the presence of thaumarchaeotal groups 1.1a and 1.1b at and above the oxycline. In the anoxic deep water, amoAgene abundance was an order of magnitude lower than at the oxycline and high abundance (˜ 90 ng l−1) of an IPL with the acyclic glycerol dialkyl glycerol tetraether (GDGT-0) was evident. The predominance of archaeal 16S rRNA sequences affiliated to the uncultured crenarchaeota groups 1.2 and miscellaneous crenarchaeotic group (MCG) points to an origin of GDGT-0 from uncultured crenarchaeota. This study demonstrates the importance of thermal stratification and nutrient availability in the distribution of archaeal groups in lakes, which is relevant to constrain and validate temperature proxies based on archaeal GDGTs (i.e. TEX86).

Related Topics

    loading  Loading Related Articles