Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community

    loading  Checking for direct PDF access through Ovid

Abstract

Crop rotation of flooded rice with upland crops is a common management scheme allowing the reduction of water consumption along with the reduction of methane emission. The introduction of an upland crop into the paddy rice ecosystem leads to dramatic changes in field conditions (oxygen availability, redox conditions). However, the impact of this practice on the archaeal and bacterial communities has scarcely been studied. Here, we provide a comprehensive study focusing on the crop rotation between flooded rice in the wet season and upland maize (RM) in the dry season in comparison with flooded rice (RR) in both seasons. The composition of the resident and active microbial communities was assessed by 454 pyrosequencing targeting the archaeal and bacterial 16S rRNA gene and 16S rRNA. The archaeal community composition changed dramatically in the rotational fields indicated by a decrease of anaerobic methanogenic lineages and an increase of aerobicThaumarchaeota. Members ofMethanomicrobiales,Methanosarcinaceae,MethanosaetaceaeandMethanocellaceaewere equally suppressed in the rotational fields indicating influence on both acetoclastic and hydrogenotrophic methanogens. On the contrary, members of soil crenarchaeotic group, mainlyCandidatusNitrososphaera, were higher in the rotational fields, possibly indicating increasing importance of ammonia oxidation during drainage. In contrast, minor effects on the bacterial community were observed.AcidobacteriaandAnaeromyxobacterspp. were enriched in the rotational fields, whereas members of anaerobicChloroflexiand sulfate-reducing members ofDeltaproteobacteriawere found in higher abundance in the rice fields. Combining quantitative polymerase chain reaction and pyrosequencing data revealed increased ribosomal numbers per cell for methanogenic species during crop rotation. This stress response, however, did not allow the methanogenic community to recover in the rotational fields during re-flooding and rice cultivation. In summary, the analyses showed that crop rotation with upland maize led to dramatic changes in the archaeal community composition whereas the bacterial community was only little affected.

Related Topics

    loading  Loading Related Articles