Elemental content of the placenta: A comparison between two high-risk obstetrical populations, adult women carrying multiples and adolescents carrying singletons


    loading  Checking for direct PDF access through Ovid

Abstract

BackgroundThe placenta is responsible for the exchange of nutrients and for preventing harmful compounds from entering the fetal circulation. With increasing industrialization, exposures to commercial and toxic metals become a concern for both pregnant women and those planning a pregnancy. The understanding of transport mechanisms and pharmacokinetics for most inorganic elements is incomplete and limited to normal term deliveries.ObjectivesTo obtain novel data on 46 inorganic elements in placentae from two high-risk obstetric populations, women carrying multiples and adolescents carrying singletons, evaluating differences, if present, and identifying predictors of placental content.MethodsPlacental tissue was collected from adolescents carrying singletons and adults carrying multiples. Elemental content was analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). Multivariate regression and factor analyses were used.ResultsWith the exception of Au and Pt, almost all placentae contained quantifiable concentrations of each element analyzed. All placentae contained the essential elements Ca, Fe, Mg, Se and Zn, which clustered together onto the same factor. Most elements were higher in placentae from women carrying multiples. Differences in placental content disappeared after adjusting for maternal age. Rare earth elements (REEs) clustered together and remained higher in the multiples even after adjusting for maternal age.ConclusionHuman placentae contain a wide range of elements, including REEs. Ranges differed considerably between cohorts. Elements with similar chemical properties, like REEs or nutritionally essential elements, clustered together. Maternal age, and therefore longer environmental exposure, was significantly associated with elevated element concentrations in the placenta. Placental concentrations of several metals that are known to be nutritionally essential (e.g., Fe, Ca, Mg, and Zn) did not differ significantly between cohorts, suggesting tight regulation, whereas concentrations of environmental contaminants differed significantly between groups, even after adjusting for maternal age.HighlightsLevels of 46 elements were measured in placentae from two high-risk cohorts.Almost all placentae contained traces of the 46 elements, including REEs.Maternal age was significantly associated with concentrations in the placenta.Elements with similar properties and roles clustered together.

    loading  Loading Related Articles